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1. Introduction

Steel bolted connections are used in many engineering, mechani-
cal and building structures that can be subjected to a wide variety 
of thermal loads [11, 28]. As a result of these loads, the preload of 
bolts changes, which may be an unfavorable phenomenon [27, 51]. It 
has been observed that, in the case of moment connections, the ten-
sile force in the bolts tends to decrease with increasing temperature. 
However, in the case of shear connections, the force in the bolts tends 
to increase with temperature [44]. At elevated temperatures, the me-
chanical properties of the bolts also drop significantly, which directly 
affects the safety and reliability of steel structures [3, 34, 53].

Many experimental studies with the use of testing machines have 
shown that temperature loads quickly lead to a significant decrease in 
the load capacity of bolted connections and affect their failure modes 
[22, 55, 62]. In order to prevent bolted connections from being failure 
by elevated temperatures, a series of experimental studies have been 
carried out, which have resulted in the development of special design 
rules, for example, for additional protection of bolts [7, 18, 23, 61].

In the papers written so far, the behaviour of bolted connections 
at elevated temperatures is sometimes analysed on the basis of the 

component method [2, 20, 46, 58, 63]. The still poor knowledge of 
some elements, especially the elements in shear, limits the wider ap-
plication of this method. However, much more often it is modelled 
and described using the finite element method (FEM). Towarnicki and 
Grzejda [49] presented an analysis of the influence of the temperature 
load on the stress state in the joint separated from the bolted flange 
connection. They demonstrated the usefulness of using a simplified 
bolt model for modelling bolted connections in order to determine 
the forces acting on the bolt. The influence of the thread length on the 
failure of bolted connections at elevated temperatures was discussed 
by Shaheen et al. [45]. Schaumann and Kirsch [42] simulated a flush 
endplate connection at elevated temperatures taking into account non-
linearities, e.g. temperature dependent material. Lim and Young [25] 
investigated the influence of elevated temperatures on bolted mo-
ment-connections between cold-formed steel members and proposed 
some simple design rules that allow for this influence to be taken into 
account. Abid et al. [1] studied the strength and sealing performance 
of a preloaded gasketed bolted flange connection at combined pres-
sure, axial and thermal loading to show its safe and unsafe operating 
limits. Similar thematic considerations were presented by Wang et al. 
[56]. The fracture behaviour of high-strength bolted steel connections 
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at elevated temperatures and also loaded with shear forces was de-
scribed by Cai et al. [5]. Li and Zhao [24] conducted an analytical 
tests of beam-to-column connections at elevated temperatures and the 
verification of these tests with the use of FEM.

There are also many papers on the determination of the behaviour 
of bolted connections under fire conditions [12, 13, 19, 21, 37-39] and 
several on the behaviour of bolted connections at reduced tempera-
tures [29, 47, 50] using FEM.

Only a few studies dealt with the issue of changing the stress 
distribution in a bolted connection subjected first to failure and 
then to temperature loads. Most often they concern the analysis 
of connections with properties changed by the earthquake, and 
therefore different from those designed for a given structure 
and then subjected to fire. Della Corte et al. [9] investigated 
the post-earthquake fire resistance of steel moment resisting 
frames, which confirmed that the fire resistance of structures 
can be significantly reduced depending on the damage caused 
by seismic action. Xu et al. [59] came to similar conclusions, but 
in the case of bolted end-plate connections with end-plate and 
web stiffeners. Tartaglia et al. [48] described the behaviour of 
seismically damaged extended stiffened end-plate connections 
at elevated temperature. They presented the results in terms 
of moment-rotation-temperature characteristics and pattern of 
plastic deformations, which indicate under what conditions the 
type of cyclic damage may affect the performance of the con-
nection under high temperature. An example of a test stand and 
test procedure to analyse the behaviour of steel beam to column 
end-plate bolted connections under the post-earthquake fire ac-
tion was published by Petrina [35].

Likewise, there are few papers on the effect of the number 
and arrangement of bolts in a bolted connection on its performance 
under the influence of high temperatures. Wang et al. [57] conducted 
an experimental study of the relative structural fire behaviour and ro-
bustness of different types of bolted steel connections in restrained 
steel frames. Wang and Wang [54], and Yahyai and Rezaeian [60] 
presented numerical analyses verified experimentally on essentially 
similar issues. However, they did not investigate the effect of bolts 
loss on the bolted connection behaviour.

There are also several papers on the evaluation of the reliability of 
bolted connections, or larger structures with these connections. How-
ever, they do not take into account the influence of temperature on 
reliability, but rather relate to the assessment of fatigue reliability [26, 
30, 41].

According to the conducted review of the state of knowledge, few 
scientists have so far dealt with the health assessment of the bolted 
connections under conditions of elevated temperatures and after the 
failure occurred earlier in the connection. Therefore, this theme was 
taken up by the author of the featured paper. The paper concerns a 
bolted connection, some experimental tests of which have been de-
scribed in [14-16]. The novelty in relation to the above-cited articles 
is that in the current paper an asymmetrical connection was modelled 
under bolt loss conditions. The failure of the connection was simu-
lated by removing the selected bolts from the connection, similarly 
to the explicit finite element analysis using element erosion, in which 
the elements are removed from the analysis after meeting certain fail-
ure criteria [43]. The calculations were made for an exemplary bolted 
connection using the finite element system called Midas NFX 2020 
R2, and their results are the courses of force changes in bolts remain-
ing in the connection, which was pretensioned and then subjected to 
variable temperature loads.

2. Material and methods
The subject of research and analysis is the bolted connection pre-

sented in Fig. 1a. The tested connection is made of a pair of plates 
joined with i fasteners shown in Fig. 1b (for i = 1, 2, …, 7). The 
fasteners are of the M10x1.25 type and consist of a bolt and a nut as 

one solid [52]. The joined plates are welded to the top and bottom 
bases. The thickness of the joined plates and the bases is equal to 28 
mm. The connection is sloped to the horizontal at an angle of 60 deg 
(for comparison, see [8]). The total heigh of the structure is approxi-
mately 266 mm. The plates and bases are performed of 1.0577 steel. 
After machining, the bolts and nuts have been tempered to achieve 
the characteristics for the class of mechanical property 8.8 and 8, re-
spectively.

The contact surface area between the joined plates and the assumed 
numbering of the bolts are presented in Fig. 1c. This area fits in a cir-
cle with a radius of 90 mm, and its outline does not exceed 90 cm2.

Using the Midas NFX 2020 R2 finite element system tools, a mod-
el of the bolted connection was made, shown in Fig. 2. The joined 
plates were divided into 3D finite elements, while the fasteners were 
modelled as flexible beams with rigid heads and nuts (for comparison, 
see [32, 33]). All connection parts were assigned the properties of 
isotropic linear steel materials. The constitutive relationships in this 
case can be described by Hooke’s law [10].

General surface-to-surface contact elements were applied between 
the joined plates. They allow for non-linear analysis taking into con-
sideration the possibility of separating the joined plates in the vertical 
direction and the occurrence of sliding in the horizontal direction. The 
following values of the contact layer parameters were adopted:

normal stiffness ratio equal to 10,• 
tangential stiffness ratio equal to 1,• 
static friction factor equal to 0.14 [17].• 

Fig. 2. FE-model of the bolted connection: (a) entire connection, (b) single 
fastener

Fig. 1. Model of the connection: (a) model 3D, (b) model 3D of the single fastener, (c) 
outline of the surface at the contact of the joined plates and assumed numbering 
of the bolts
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Welded type contact elements were used between the plates and the 
bases, preventing the elements from moving relative to each other in 
any direction.

The bolted connection model was created with a total of 78750 ele-
ments and 133162 nodes. The maximum size of the side length of a 
finite element in the mesh does not exceed 10 mm. The mesh has been 
significantly densified at the point of contact between the joined plates 
and at the point of contact between the fasteners and the joined plates 
(for comparison, see [4]). The model was constrained by taking away 
all degrees of freedom on the underside of the bottom base. The preload 
of the bolts was applied via the “pretension” function built into the Mi-
das NFX 2020 R2 system. A non-linear static analysis was chosen as 
the type of FE-analysis. The mathematical description of the tempera-
ture distribution in this case can be done using the Fourier-Kirchhoff 
partial differential equation for stationary isotropic bodies [40].

The research was divided into the following stages:
Pretensioning the bolted connection according to one of the six 1. 
adopted tensioning orders presented in Table 1 with a preten-
sion Fp equal to 22 kN.
Performing calculations of forces in the bolts in the connec-2. 
tion subjected to thermal loads in the range from 20 to 600°C 
(temperature boundary conditions were assigned to all model 
nodes as uniform prescribed nodal temperature [6]).
Entering the failure states according to the diagram shown in 3. 
Table 2 (after each way of tensioning the bolted connection).
Designation of changes in the value of forces in the bolts re-4. 
maining in the connection.
Duplication the above steps for all connection tensioning or-5. 
ders.

Table 1. Orders of bolt tensioning

Queue No. Order of bolts Queue No. Order of bolts

1 1-2-3-4-5-6-7 4 1-5-2-6-3-7-4

2 1-3-5-7-2-4-6 5 1-6-4-2-7-5-3

3 1-4-7-3-6-2-5 6 1-7-6-5-4-3-2

3. Results and discussion
The obtained courses of the bolt forces variation for individual 

types of pretensioning of the connection are qualitatively very similar. 
Since their quantitative comparison also gives a high similarity, this 
paper presents a set of diagrams for an example type of pretensioning 
of the connection, which is the queue No. 3, marked with bold letters 
in Table 1.

The graphical presentation of the calculation results is shown in 
Fig. 3. The values of the operating forces in the bolts remaining in the 
connection after the introduction of two successive states of failure 
and those obtained for the healthy connection were compared. The 
operating forces were related to the preload of the bolts to improve 
the readability of the graphs.

The forces in the bolts tend to increase with temperature, which is 
inherent in shear connections [44]. In general, increments in operat-
ing bolt forces due to temperature decrease as the number of bolts 

Table 2. Connection failure states

1 2

Fig. 3. Distributions of bolt forces in the connection pretensioned according 
to the queue No. 3: a) bolt No. 2, b) bolt No. 3, c) bolt No. 5, d) bolt 
No. 6, e) bolt No. 7
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removed from the connection increases. However, due to the asym-
metry in the arrangement of bolts in the connection, there is no sin-
gle relationship to determine the magnitude of the force decrease in 
bolts compared to the healthy connection, as a function of the number 
of bolts lost. Its search may be the subject of a separate publication, 
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which would take into account other types of connections, with a dif-
ferent number of bolts.

The force increments in bolts for individual load conditions of the 
connection are summarised in Table 3. They are expressed using the 
following Z1 indicator:

 1 100
pT

bi bi
p

bi

F F
Z

F
−

= ⋅   (1)

where: T
biF  is the operating force in the i-th bolt at the end of the con-

nection heating process as a function of the type of tensioning, and 
 p

biF  is the preload of the i-th bolt.

In most cases, the force increments in bolts under the influence of 
temperature acting on the damaged connection are smaller than for 
the healthy connection. The exceptions are the increments in force in 
bolt No. 2 in the first stage of failure, when they are greater than cor-
responding increments for the healthy connection. The force in this 
bolt then increases by about 20% for all tensioning cases. This does 
not exceed the permissible value of the preload according to Eurocode 
3 [36], which for the M10x1.25 bolt in the class 8.8 is 31 kN. On the 
other hand, it may pose a threat due to the high pressure on the contact 
surface of the nut and the joined plate.

The bolt tensioning method has a slight effect on the Z1 indicator 
values.

The last comparisons of the calculation results presented in Table 
3 were aimed at determining the value of the temperature T at which 
the operating forces in the bolt No. 2 in the first state of connection 
failure reach the values corresponding to the final load condition in 
the healthy connection. The results of these analyses are summarised 
in Table 4.

The bearing capacity of bolt No. 2 in the failure state No. 1 de-
creased by approx. 13%. The bolt tensioning method has a slight ef-
fect on the value of the bearing capacity of the connection.

The total bolts tension at the end of the connection loading process 
was compared on the basis of the proposed Z2 indicator described by 
the formula:

 2 100
h d

t t
h

t

F FZ
F
−

= ⋅  (2)

where: h
tF  is the total force in the bolts in the considered distribution 

of forces at the end of the process of loading the healthy connection, 
and  d

tF  is an analogous force in the case of the damaged connection.

The greatest drops in total force do not exceed 2% for failure state 
No. 1 and 5% for failure state No. 2, for all methods of tensioning the 
bolted connection (Table 5). The bolt tensioning method has a slight 
effect on the differences in these drops.

In the literature cited in the introduction, the differences in the dis-
placements of the joined elements as a result of the removal of selected 
bolts were studied rather than the differences in the values of forces in 
the bolts not removed from the connection. In this sense, the presented 
research and their results supplement the state of knowledge on the 
behaviour of damaged bolted connections at elevated temperatures.

4. Conclusions
The paper presents a method of modelling preloaded asymmetric 

bolted connections in conditions of failure and load with increased 
temperature. This method can be used in assessing the health of bolted 
connections. The results of the study lead to the following conclu-
sions:

The increments in operating forces in a damaged connection 1. 
subjected to elevated temperature may be greater than in the 
case of a healthy connection. In extreme cases, the differences 
in the values of the operating forces can be as high as 20%.
The bearing capacity of a damaged connection may be reduced 2. 
by approx. 13%.
The method of tensioning the connection has a slight effect on 3. 
the magnitude of increments in the values of bolt forces and 
the bearing capacity of the connection in its failure state.
The described tests can be extended to determine the universal 4. 
load-strength interference [31] allowing the assesment of the 

Table 3. Z1 indicator values

Z1, %

Healty connection State 1 State 2

Queue No.
Bolt number Bolt number Bolt number

2 3 5 6 7 2 3 5 6 7 2 3 5 6 7

1 15.7 15.0 20.1 19.1 20.2 20.1 8.1 19.4 12.8 19.7 12.3 7.0 19.6 8.6 18.8

2 16.0 14.6 19.7 19.5 19.9 20.6 7.9 19.0 13.1 19.3 12.7 6.6 18.9 8.8 18.5

3 16.1 15.0 20.6 19.1 19.7 20.6 8.1 19.9 12.9 19.1 12.5 7.2 20.4 8.6 18.1

4 15.7 15.0 19.6 19.1 20.3 20.1 8.1 18.9 12.8 19.8 12.3 6.9 18.9 8.6 18.9

5 15.8 15.3 20.5 18.6 20.2 20.3 8.2 19.9 12.4 19.7 12.3 7.4 20.4 8.3 18.6

6 16.0 15.1 20.2 19.1 19.7 20.6 8.1 19.5 12.8 19.2 12.6 7.1 19.8 8.6 18.2

Table 4. Limit values of the temperature T

Queue No. T, °C

1 527.1

2 526.4

3 526.8

4 527.1

5 526.6

6 526.8

Table 5. Z2 indicator values

Queue No.
Z2, %

State 1 State 2

1 1.69 4.04

2 1.68 4.07

3 1.70 4.03

4 1.69 4.06

5 1.68 3.99

6 1.69 4.04
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